Classification of car in lane using support vector machines
نویسندگان
چکیده
Support Vector Machines (SVMs) have become popular due to their accuracy in classifying sparse data sets. Their computational time can be virtually independent of the size of the feature vector. SVMs have been shown to out perform other learning machines on many data sets. In this paper, we use SVMs to detect a car in a lane of traffic. Digital pictures of various driving situations are used. The results from the SVM algorithm are compared to results from a standard neural network approach.
منابع مشابه
Face Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملOn-Road Vehicle and Lane Detection
We implement lane detection using edge detection, Hough transforms, and vanishing point filtering in Hough space; the car detection is implemented by using histogram of oriented gradients feature descriptors and classified by linear support vector machines. Hard-negative mining is applied to alleviate detection of false positives; with the information of vanishing point along with prior knowled...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملA QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملA comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater
The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...
متن کامل